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Abstract

Misalignment of multibearing rotor systems is one of the most common fault conditions yet it is still not fully

understood. There are numerous (and sometimes confusing) accounts in the literature asserting the presence of harmonics

in the vibration signal, but no quantitative descriptions are offered. Harmonics may arise, of course, from the

nonlinearities in fluid film journal bearings or from the kinematics of flexible couplings, but in this paper only rigidly

coupled rotors mounted on idealised linear bearings are considered. It is shown that even for this case, excitation at twice

synchronous speed is developed and an expression for the magnitude and phase of the response is derived. Several

examples are then studied to give some insight into the magnitude of these harmonic terms which can arise. It is argued

that it is precisely because the harmonic terms can arise from diverse sources, that a full description of the phenomena has

proved somewhat elusive.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Rotor misalignment is one of the most common difficulties in the operation of rotating machinery and is at
the heart of mechanical engineering, yet it remains incompletely understood. Despite the rapid increase in
understanding of rotor dynamics, no satisfactory analysis explains the range of observed phenomena. There
are, in the literature, reports of vibration signals at twice rotational speed and higher harmonics, yet other
authors who report only synchronous excitation. Even recent discussions fail to reach consensus on the true
nature of the phenomena. At a time when rotor dynamics may be regarded as a mature technology,
misalignment remains as an outstanding area, where basic understanding is somewhat lacking.

Part of the difficulty may arise because the single label of ‘misalignment’ covers a range of situations and the
resulting behaviour arises from a combination of physical processes. Some authors have resorted to detailed
nonlinear studies in an attempt to understand the nature of the vibrations exhibited by a misaligned machine,
but this is not considered an appropriate method. To gain an understanding an attempt is required to
understand the basic phenomena. Clearly, harmonics of shaft speed can be generated by any nonlinearity of
the system, which may be in a coupling or bearing. Before examining this, however, attention is focused on a
simple system with no nonlinear components.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

j bolt reference index
I1,I2 polar moments of inertia
N number of coupling bolts
Kb effective stiffness of each bolt
K,K1,K2,K3 component of stiffness matrix
Ks stiffness matrix of shaft
Kc constant stiffness contribution of cou-

pling
DK(t) time-dependent stiffness term
kx,ky shaft stiffness in the 2 orthogonal direc-

tions (referred to each rotor if added
suffix)

M mass matrix

r radius of coupling bolt positions on
reference shaft

Rj radius position of bolt j on second shaft
X1,Y1 vibration levels of shaft 1
X2,Y2 vibration levels of shaft 2
X,Y vibration differentials
Utor stored energy for torsion only case
U total stored energy
aj angular position of bolt j on first shaft
jj angular position of bolt j on second shaft
d vertical misalignment at the coupling
e torsional displacement
O reference rotor speed
f total rotation of shaft 1
y total rotation of shaft 2
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Most authors have sought to explain the harmonic excitation in terms of the nonlinearity of either the
bearings and/or flexible couplings in the system, and indeed it is to be expected that these elements will play a
part in the dynamics of a real system. Dewell and Mitchell [1] gave a discussion of the harmonics arising in
flexible couplings. Al-Hussain and Redmond [2] developed a set of nonlinear equations describing the motion
of a misaligned system. However, they report no twice per rev component of vibration. Ref. [3] also reports a
full nonlinear analysis which does show nonsynchronous excitation under the appropriate conditions. But the
source of these harmonics is the nonlinearities of the system. It is shown in the current paper that a misaligned
system can give rise to harmonic terms even when mounted in a purely linear way.

In a pair of papers, Xu and Maragona [4,5] have given an analysis of a system including a flexible coupling
and have backed up their predictions with laboratory experiments on a rig. Here again, however, the source of
the super harmonic components in the vibration signal emanates from the nonlinear behaviour of the flexible
coupling.

In the following section, we develop the simplest possible model for two shafts which are rigidly coupled
together. The basic model will be developed in Section 2, whilst the resulting motion for several different
scenarios is evaluated in Section 3. Section 4 gives an overview of factors influencing the dynamics of a
misaligned system some indication of the experimental work proposed as a next step to the ideas discussed in
the present paper.

2. Model development

The case considered comprised two rotors, which are not co-axial but have a relative displacement d. The
two rotors are connected by a series of N bolts, which on the first shaft are distributed around the perimeter at
some radius r from the axis of the shaft. On the second shaft, however, if the bolts are to fit easily, the location
holes must be positioned on a circle whose centre is offset by d from the axis of the second rotor, this
parameter d being the extent of the parallel offset or misalignment. Initially, it is assumed that the two
portions of the assembly rotate at the same speed, but simple geometry dictates that the two pairs of holes
cannot remain aligned since they rotate about different axes.

Fig. 1 illustrates the situation for the case of a coupling with three bolts. The two shafts are assumed to
rotate at the same rate but about axes which are displaced. The location points attached to the larger coupling
are denoted by diamonds whilst those on the opposing shaft are shown as circles. The figure shows the
positions of the bolt locations on both shafts at a number of instants during one full cycle. It can be seen that
points move relative to each other generating both forces and moments which vary in time.

On the flange of rotor 1, the coupling bolts will be arranged about the centre. Let the number of bolts
be N, equally positioned around the circumference of the first rotor. Then at time zero, the position of
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Fig. 1. Orientation of coupling bolts.
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bolt j is given by

xj ¼ r cosððj � 1ÞaÞ

yj ¼ r sinððj � 1ÞaÞ where a ¼
2p
N

or more simply
xj ¼ r cos aj ;

yj ¼ r sin aj
(1)

(A full list of the notation use is given for reference in the nomenclature). On the other rotor, the holes are not
distributed around the centre, but offset. Simple geometry shows that the position of the jth bolt relative to the
centre of this rotor is

X j ¼ Rj cosjj

X j

Y j

( )
¼ Rj

cos j̄j

sinjj

( )
þ

cosf sinf

�sinf cosf

" #
0

d

� �
, (2)

where

Rj ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ d2 þ 2d cosððj � 1ÞaÞ

q
; jj ¼ tan�1

dþ r sinððj � 1ÞaÞ
r cosððj � 1ÞaÞ

� �
. (3)

To start with an initially simply model, assume that the two rotors rotate at speeds O; _f, respectively, where
O is taken to be constant (but this restriction can be easily relaxed). Then the kinetic energy is

T ¼ 1
2
I1O2 þ 1

2
I2 _f

2
(4)



ARTICLE IN PRESS
A.W. Lees / Journal of Sound and Vibration 305 (2007) 261–271264
and the potential energy is

U tor ¼
Kb

2

XN

j¼1

½ðr cosðaj þ OtÞ � Rj cosðjj þ fÞ � d sinfÞ2�

þ
Kb

2

XN

j¼1

ðr sinðaj þ OtÞ � Rj sinðjj þ fÞ � d cosfÞ2. ð5Þ

Note the locus of the coupling bolts: those on rotor 1 simply follow a single circle, whereas those on rotor 2
each follow a circle of different diameters as shown by Eq. (3). The first shaft is considered to be rigid and has
a very large torsional inertia. The location for the single coupling bolt is perfectly positioned at radius r on
rotor 1. The second rotor has torsional inertia I2 and stiffness values kx,ky and this rotor has displacements
u,v,j. The arrangement is shown in Fig. 2. This model, considerably simplifies the algebra, but retains the
essential physics of the situation. Clearly, the degree of misalignment is substantially exaggerated for the sake
of clarity.

The model of the system considered here is shown in Fig. 3. Two rigid rotors, mounted on flexible bearings,
are connected by means of a set of N bolts, which have finite stiffness. The axes of the two rotors are separated
by d vertically, and it is the purpose of this analysis to examine the effect of this misalignment (taken to be in
the vertical direction) on the dynamics of the system. The system is assumed to be perfectly balanced and
hence the only exciting forces arise from the misalignment: more specifically they arise from varying forces in
the coupling bolts. It is assumed that in the frequency range of interest, only the first lateral modes of the two
rotors, together with the torsional modes, play a part in the motion.

It is assumed that the bolt holes on the flange of the first rotor are arranged around a circle centred on the
centre of the shaft cross section, but on the second rotor the bolts holes are again positioned on a circle
although the centre of this circle is displaced by d from the centre of the rotor. Hence, at zero angle, the bolts
Fig. 2. Idealised coupling.

�

Connecting bolts

Fig. 3. Model arrangement.
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joining the two flanges have no strain, but at all other angles there will be some strain energy in the connecting
bolts.

The analysis of the motion commences with an evaluation of the energy stored within the coupling bolts.
Recalling that the first shaft rotates at constant speed O, whilst that of the second shaft can vary, the potential
energy of the bolts is given by

U ¼
Kb

2

XN

j¼1

ðRj cosðjj þ yÞ þ X 2 � r cosðaj þ fÞ � X 1Þ
2

þ
Kb

2

XN

j¼1

ðRj sinðjj þ yÞ þ Y 2 � d� r sinðaj þ fÞ � Y 1Þ
2: ð6Þ

This may be re-written as

2U=Kb ¼
XN

j¼1

½R2
j cos

2ðjj þ yÞ þ ðX 2 � X 1Þ
2
þ r2 cos2ðaj þ fÞ þ 2ðX 2 � X 1ÞRj cos ðjj þ yÞ�

�
XN

j¼1

2Rjr cosðaj þ fÞcosðjj þ yÞ

�
XN

j¼1

½2ðX 2 � X 1Þr cosðaj þ fÞ � R2
j sin

2
ðjj þ yÞ � ðY 2 � Y 1 � dÞ2 � r2 sin2ðaj þ fÞ�

þ
XN

j¼1

2ðY 2 � Y 1 � dÞRj sinðjj þ yÞ � 2Rjr sinðaj þ fÞsinðjj þ yÞ � 2ðY 2 � Y 1 � dÞr sinðaj þ fÞ
h i

ð7Þ

This rather clumsy expression can now be simplified to give

U ¼
Kb

2

XN

j¼1

½R2
j þ X 2 þ r2 þ ðY � dÞ2 þ 2Xd sin y� 2ðY � dÞd cos y� 2Rjr cosðjj � aj þ y� fÞ�, (8)

where X ¼ X2�X1 and Y ¼ Y2�Y1

We can now progress by recalling that

y ¼ Otþ �, (9)

where e is the angle of torsional deflection so that, taking first-order small quantities

sin y ¼ � cosOtþ sinOt;

cos y ¼ cosOt� � sinOt:

Since the bolt positioning error is on rotor 1, it is clear that

XN

j¼1

Rj cosjj ¼ 0;
XN

j¼1

Rj sinjj ¼
Nd
2

. (10)

We now apply Lagrange’s equation to the six degrees of freedom and after a little manipulation, the
equations of motion can be expressed in the form

M€zþ Kszþ Kczþ DKðtÞz ¼ F ðtÞ. (11)
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The displacement vector takes the form z ¼ fX 1 Y 1 y X 2 Y 2 f gT and the mass matrix is given by

M ¼

m1 0 0 0 0 0

0 m1 0 0 0 0

0 0 I1 0 0 0

0 0 0 m2 0 0

0 0 0 0 m2 0

0 0 0 0 0 I2

2
6666666664

3
7777777775
. (12)

But the stiffness matrices are in three components. The shaft stiffness matrix for this simple case is given by

Ks ¼

kx1 0 0 0 0 0

0 ky1 0 0 0 0

0 0 0 0 0 0

0 0 0 kx2 0 0

0 0 0 0 ky2 0

0 0 0 0 0 0

2
666666664

3
777777775
. (13)

Whilst the steady contribution of the coupling is described by

Kc ¼

NKb 0 0 �NKb 0 0

0 NKb 0 0 �NKb 0

0 0 NKbr2 0 0 �NKbr2

�NKb 0 0 NKb 0 0

0 �NKb 0 0 NKb 0

0 0 �NKbr2 0 0 NKbr2

2
6666666664

3
7777777775
. (14)

There is also, however, a fluctuating component arising from the coupling which is given by

DKðtÞ ¼
NKbd
2

0 0 sinOt 0 0 �sinOt

0 0 cosOt 0 0 �cosOt

sinOt cosOt 0 �sinOt �cosOt 0

0 0 �sinOt 0 0 sinOt

0 0 �cosOt 0 0 cosOt

�sinOt �cosOt 0 sinOt cosOt 0

2
666666664

3
777777775
. (15)

The forcing term in Eq. (11) comprises both internal and external components. For the case in which there
are no external forces and the excitation arises solely from the geometry of the coupling

F ¼
NKbd
2

cosOt

sinOt

d

�cosOt

�sinOt

�d

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
. (16)

Recognising that for the complete rotor (i.e. coupled), the dynamic behaviour is described by the equation
of motion

M€zþ Kzþ DKðtÞz ¼ F ðtÞ, (17)

where K ¼ Ks+Kc.
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Having established the equations of motion for the system, a number of scenarios can be identified. The first
point to note is that the equations are linear but have some time varying coefficients (arising from the rotary
motion). The other major feature to note is that the torsional and flexural motions become coupled. The
torsional excitation arising in the coupling will be of order d2 and this will feed back into the flexural motion.
The three cases to be considered as
(a)
 A system with an ideal coupling with the torsional excitation from the coupling.

(b)
 A machine having other torsional fluctuations at synchronous frequency.

(c)
 A system with a faulty coupling in which terms in the equations of motion change very substantially.
3. Case studies

Some specific cases are now presented to gain some understanding of the behaviour of the model derived
above. To illustrate performance features a simplified model with only 3 degrees of freedom has been
considered. This has been achieved by considering the first rotor to have infinite mass and inertia. The second
rotor was taken to have a mass of 100 kg and a radius of gyration of 0.3m. The damping of the lateral mode
was 1% whilst that of the torsion mode was 0.1% reflecting the observation that many torsional modes are
very lightly damped in real machines. This example rotates at 1200 rev/min, which is also its torsional natural
frequency, and the lateral resonances occurs at 40Hz. The degree of misalignment in these studies is 0.5mm.

Fig. 4 shows the vibrational response with the rotor running at 1200 rev/min. Note that the forcing arises
purely from the eccentricity of machining on one of the coupling faces of 0.1mm. No mass unbalance has been
applied to the rotor (although this would be an interesting simulation to examine at a later stage). Although
the figure is on a logarithmic scale, the 2� component of excitation is significant, being of order 2 mm.

The spectrum changes somewhat if there is some torsional excitation (not emanating from the coupling).
Fig. 5 shows the situation with a synchronous torsional moment added. Such a torque fluctuation at 1/rev may
well arise in many turbo-machines. In the case studied here, the fluctuation is 390Nm at synchronous speed.

The situation changes substantially if the coupling is faulty, in addition to the alignment error. If, for
instance one of the bolts fails to take load, this changes the effective terms in the equations of motion. In
Fig. 4. Response with rotor at 1200 rev/min.
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Fig. 5. Response with rotor at 1200 rev/min with torque fluctuation.

Fig. 6. Response of faulty coupling with rotor at 1200 rev/min.
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particular, with one failed bolt equation (10) may be replaced by

XN

j¼1

Rj cosjj ¼ 0;
XN

j¼1

Rj sinjj ¼
Nd
2
� R1. (18)

Inserting this into the model yields the spectrum shown in Fig. 6. Again the various harmonic terms are
clear. In this case, no external excitation was given torsionally. The excitation arises solely from the geometry
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Fig. 7. Response at 10% over critical d ¼ 0.5mm.

Fig. 8. Response of faulty coupling with rotor at 600 rev/min.
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of the coupling. The coupling is considered faulty, and one of the bolts was, in effect, eliminated from the
model. Note that whilst this might be considered to be a fairly extreme fault, a coefficient could be
conveniently introduced to represent a weakened bolt.

The situation changes if the machine speed is now increased by 10% for this same case with a faulty
coupling. The result is shown in Fig. 7. A series of harmonics now arise. The presence of a peak at the flexural
natural frequency is just a transient, which would disappear in a longer simulation.



ARTICLE IN PRESS
A.W. Lees / Journal of Sound and Vibration 305 (2007) 261–271270
Finally, Fig. 8 shows the situation where the rotor is running at half the torsion critical speed (and quarter
of the flexural). There is now significant three times per revolution excitation, of order 10 mm, but nothing
observable at twice shaft speed.

4. Discussion

This paper reports some early studies on rotor misalignment and clearly the work has concentrated on a
single form of misalignment. As remarked earlier, misalignment is a major fault condition in rotating
machinery, yet there is no widely accepted theoretical basis for its analysis. In particular whilst most authors
report the generation of vibration response at harmonics of rotor speed (and in particular 2� ) there is nothing
in the literature (to the best of the author’s knowledge) showing how these harmonics arise. Al-Hussain and
Redmond [2] were unable to detect harmonics in their nonlinear model. It is believed the present paper may
offer a clue to this confused state of affairs.

The important feature shown in the analysis of Section 2 is a cross-coupling between torsional and flexural
vibration. Furthermore this cross-coupling applies equally to torque oscillations generated by the coupling
itself or from elsewhere in the machine. Not surprisingly the consequences in terms of vibration are
significantly more onerous when the coupling is faulty. Note that the degree of excitation and twice rotational
speed is increased markedly. Whilst the synchronous term also increases, this will normally be eliminated by
trim balancing. Hence, it is the absolute value of the twice pre revolution term, which is important rather than
its relationship to the synchronous excitation.

It has commonly been assumed that harmonics of shaft speed arise from nonlinearities of the system, in
most cases emanating from the bearings, but in reality it appears the situation is somewhat more complex.
In the analysis offered here, it is shown that a purely linear model can generate harmonics. The harmonic
terms in the response arise from geometric nonlinearities of the motion. In a real system there will, in addition,
be nonlinear components which may either enhance or diminish the excitation of response at multiples of
shaft speed. Perhaps it is this multiplicity of sources, which imposes some variability on the nature of
responses of misaligned machines, and may help to explain why this prominent machine fault is still not fully
understood.

The models presented in this paper are clearly highly idealised and merely chosen in an attempt to
understand the basic mechanisms. Work is currently in hand to formulate these concepts into a form for
inclusion into an FE model of a real machine. This will be reported in the near future. In a real machine the
situation is somewhat more complicated and torque will be transmitted partially by interfacial friction. Only a
detailed model of the coupling can help resolve this issue. Such a detailed model will also be required to
establish the appropriate ‘bolt stiffness’ term required to yield a realistic model of a given coupling.

There are numerous sources of harmonic response in a real machine. The purpose of this paper, albeit with
simplified models, is to illustrate one source of excitation in misaligned rotors with rigid couplings.

5. Conclusions
(a)
 Using a purely linear model, the equations of motion of a machine with a coupling alignment fault have
been derived.
(b)
 Solutions for some simple cases have been given both analytically and numerically.

(c)
 It has been shown that the linear model generates responses at harmonics of shaft speed.

(d)
 The harmonics are caused by an interaction of torsional and flexural effects.

(e)
 The combination of these mechanisms with the nonlinearities of a real system may explain the confusion in

the literature.
References

[1] D.L. Dewell, L.D. Mitchell, Detection of misaligned disk coupling using spectrum analysis, Journal of Vibration, Acoustics, Stress and

Reliability in Design 106 (1984) 9–16.



ARTICLE IN PRESS
A.W. Lees / Journal of Sound and Vibration 305 (2007) 261–271 271
[2] K.M. Al-Hussain, I. Redmond, Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment,

Journal of Sound and Vibration 249 (3) (2002) 483–498.

[3] J.M. Krodkiewski, J. Ding, Theory and experiment on a method for on site identification of configurations of multi-bearing systems,

Journal of Sound and Vibration 164 (1993) 281–293.

[4] M. Xu, R.D. Marangoni, Vibration analysis of a motor-flexible coupling rotor system subject to misalignment and unbalance—part 1:

theoretical model analysis, Journal of Sound and Vibration 176 (1994) 663–679.

[5] M. Xu, R.D. Marangoni, Vibration analysis of a motor-flexible coupling rotor system subject to misalignment and unbalance—part 2:

experimental validation, Journal of Sound and Vibration 176 (1994) 681–691.


	Misalignment in rigidly coupled rotors
	Introduction
	Model development
	Case studies
	Discussion
	Conclusions
	References


